DERIVATIVES OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS
Derivative of exponential function y=ex
The slope of the graph of y=๐๐ฅ exactly equals the height at every point along the curve.
Hence, the derivative/gradient/slope of this function, equals the function itself. ๐ (๐๐ )/๐ ๐ = ๐๐
Derivative of natural logarithm function y = lnx
The slope of the tangent of y=ln x at x=2 is ยฝ . (We can observe this from the graph, by looking at the ratio rise/run)
If y=ln x
x | 1 | 2 | 3 | 4 | 5 |
Slope of graph | 1 | 1/2 | 1/3 | 1/4 | 1/5 |
1/x | 1 | 1/2 | 1/3 | 1/4 | 1/5 |
We see that the slope of the graph for each value of x is equal to 1/x.ย (for all x>0)
If we did more iterations, we can conclude that derivative of logarithm function y=ln x is: d(lnx)/dx = 1/x
Ex. Find the derivative of the following:
Solution:
The chain rule tells us how to find the derivative of a composite function.
Suppose we have two functions, f(x) and g(x):
Ex. Find the derivative of the following:
Solution: 1.ย y=cos (x2)
u=x2
๐๐ฆ/๐๐ข = โ sin(๐ฅ2 )
๐๐ข/๐๐ฅ = 2๐ฅ
๐ฆโฒ = ๐๐ฆ/๐๐ฅ = ๐๐ฆ/๐๐ข ร ๐๐ข/๐๐ฅ
๐ฆโฒ = โ sin(๐ฅ2 ) ร 2๐ฅ
๐ฆ โฒ = โ2๐ฅ sin(๐ฅ2 )ย ย
Shortcut :
๐ฆ โฒ = (๐๐๐๐๐ฃ๐๐ก๐๐ฃ๐ ๐๐ ๐๐ข๐ก๐๐ ๐๐ข๐๐๐ก๐๐๐ ๐ค๐๐กโ ๐๐๐ ๐๐๐๐ก ๐ก๐ ๐๐๐๐๐ ๐๐ข๐๐๐ก๐๐๐) ร (๐๐๐๐๐ฃ๐๐ก๐๐ฃ๐ ๐๐ ๐๐๐๐๐ ๐๐ข๐๐๐ก๐๐๐ ๐ค๐๐กโ ๐๐๐ ๐๐๐๐ก ๐ก๐ ๐ฃ๐๐๐๐๐๐๐)
๐ฆ = โ sin(๐ฅ2 ) ร 2๐ฅ
2. ๐ฆ = โ5๐ฅ2โ3๐ฅ
๐ข = 5๐ฅ2 โ 3๐ฅ
Shortcut:
๐ฆโฒ = (๐๐๐๐๐ฃ๐๐ก๐๐ฃ๐ ๐๐ ๐๐ข๐ก๐๐ ๐๐ข๐๐๐ก๐๐๐ ๐ค๐๐กโ ๐๐๐ ๐๐๐๐ก ๐ก๐ ๐๐๐๐๐ ๐๐ข๐๐๐ก๐๐๐) ร (๐๐๐๐๐ฃ๐๐ก๐๐ฃ๐ ๐๐ ๐๐๐๐๐ ๐๐ข๐๐๐ก๐๐๐ ๐ค๐๐กโ ๐๐๐ ๐๐๐๐ก ๐ก๐ ๐ฃ๐๐๐๐๐๐๐)
๐ข = ๐ฅ2 + 2๐ฅ
๐๐ฆ/๐๐ข = โ1(๐ฅ2 + 2๐ฅ )โ2
๐๐ฆ/๐๐ข = โ 1 (๐ฅ2+2๐ฅ )/2
๐๐ข/๐๐ฅ = ๐ (๐ฅ 2 + 2๐ฅ)/๐๐ฅ
๐๐ข/๐๐ฅ = 2๐ฅ + 2
Shortcut:
๐ฆ โฒ = (๐๐๐๐๐ฃ๐๐ก๐๐ฃ๐ ๐๐ ๐๐ข๐ก๐๐ ๐๐ข๐๐๐ก๐๐๐ ๐ค๐๐กโ ๐๐๐ ๐๐๐๐ก ๐ก๐ ๐๐๐๐๐ ๐๐ข๐๐๐ก๐๐๐) ร (๐๐๐๐๐ฃ๐๐ก๐๐ฃ๐ ๐๐ ๐๐๐๐๐ ๐๐ข๐๐๐ก๐๐๐ ๐ค๐๐กโ ๐๐๐ ๐๐๐๐ก ๐ก๐ ๐ฃ๐๐๐๐๐๐๐)
๐ฆ โฒ = (โ 1/(๐ฅ 2+2๐ฅ )2) ร (2๐ฅ + 2)
๐ โฒ = โ ๐(๐+๐)/(๐ ๐+๐๐ )๐ย
d. y=ln (3-2x)
u=3-2x
๐๐ฆ/๐๐ข = 1 3โ2๐ฅ
๐๐ข/๐๐ฅ = 0 โ 2 = โ2
๐ฆ โฒ = ๐๐ฆ/๐๐ฅ = ๐๐ฆ/๐๐ข ร ๐๐ข/๐๐ฅ
๐ฆ โฒ = 1/(3โ2๐ฅ) ร (โ2)
๐ฆโฒ = โ 2/(3โ2๐ฅ)
Shortcut:
๐ฆโฒ = (๐๐๐๐๐ฃ๐๐ก๐๐ฃ๐ ๐๐ ๐๐ข๐ก๐๐ ๐๐ข๐๐๐ก๐๐๐ ๐ค๐๐กโ ๐๐๐ ๐๐๐๐ก ๐ก๐ ๐๐๐๐๐ ๐๐ข๐๐๐ก๐๐๐) ร (๐๐๐๐๐ฃ๐๐ก๐๐ฃ๐ ๐๐ ๐๐๐๐๐ ๐๐ข๐๐๐ก๐๐๐ ๐ค๐๐กโ ๐๐๐ ๐๐๐๐ก ๐ก๐ ๐ฃ๐๐๐๐๐๐๐)
๐ฆ โฒ = 1/(3โ2๐ฅ) ร (โ2)
๐ โฒ = โ ๐/(๐โ๐๐)
Ex. Find the derivative of the following:
Solution:
a.) y=(2x+1)sin x
f(x)=2x+1ย
g(x)=sin x ย
f'(x)=2ย
g'(x)=cos x ย
Applying product rule:
yโ=f(x)g'(x)+g(x)fโ(x)ย
yโ=2x+1cos x +2sin x ย
b.) y=(1-3x2)ex
f(x)=1-x2
g(x)=ex
f'(x)=-6xย
g'(x)=exย
Applying product rule:
yโ=f(x)g'(x)+g(x)fโ(x)ย
yโ=(1-3x2)ex-6xex
yโ=ex(1-3x2-6x)ย
c.) y=xlnx
f(x)=xย
g(x)=ln x ย
f'(x)=1ย
g'(x)=1xย
Applying product rule:
yโ=f(x)g'(x)+g(x)fโ(x)
yโ= x(1/x) + lnx
yโ=1+ln x ย
d.) y = (x-2)/(x2+1)
f(x)=x-2
g(x)=x2+1ย
f'(x)=1ย
g'(x)=2xย
Applying quotient rule:
e.) y = sinx/x
f(x)=sin x
g(x)=xย
f'(x)=cos x ย
g'(x)=1ย
Applying quotient rule:๐ฆโฒ = ๐(๐ฅ)๐โฒ(๐ฅ)โ๐(๐ฅ)๐โฒ(๐ฅ)/(๐(๐ฅ))2
๐ โฒ = ๐ ๐๐จ๐ฌ ๐โ๐ฌ๐ข๐ง ๐/๐๐
Kinematics is the study of movement of objects.
Consider the following diagram:
Note that if s(t) is the displacement:
Ex. A particle moves along a straight line such that its position at any time t is given by s(t)=5t2โt4. Find expressions for the velocity and acceleration of the particle in terms of t. Find the times at which:
Solution: Given that s(t)=5t2-t4
๐ฃ(๐ก) = ๐(๐ )/๐๐ก
๐ฃ(๐ก) = ๐(5๐ก2 โ ๐ก 4 )/๐๐ก
๐ฃ(๐ก) = 5(2๐ก) โ 4๐ก 3
๐(๐) = ๐๐๐ โ ๐๐ 3
at=10-12t2ย
The particle will be at rest when v(t)=0
10t-4t3=0ย
2t5-2t2=0ย
t=0,ย t = โ5/2
The particle will be at rest at t=0 and t = โ5/2
at=10-12t2ย
Acceleration will change sign when at=0
10-12t2=0ย
t = โ5/2
Comparing the signs of velocity and acceleration:
Interval | Sign of v | Sign of a |
0 < t < โ5/6 | + | + |
โ5/6 < t < โ5/2 | + | โ |
t >ย โ5/2 | โ | โ |
The particle is speeding up when 0ย < t < โ5/6ย and t > โ5/2
The particle is slowing down when โ5/6 < t < โ5/2
Ex. The owner of a dog park has 120 feet of fencing, and wants to create a rectangular area that is divided into three rectangular pens, as in the picture below.
Find the dimensions of the rectangle that would yield the largest possible total area of the three pens. What is this area?
x=the width of pen
y= the side of each of smaller rectangular pens.
3y= length of total pen.
Total fencing needed=6y+4x=120
This can also be written as y = (120-4x)/6ย ย โ
The total area =x(3y)
A = 3x((120-4x)/6)ย (From โ )
A=60x-2x2 ย
The maximum area will be when the derivative of area will be zero: ๐ดโฒ = ๐(60๐ฅ โ 2๐ฅ2 )/๐๐ฅ
Aโ=60-4x=0ย
4x=60ย
x=15 Feet
Putting the value of x in โ
y = ((120 โ 4(15))/6
y=10 Feet
The dimensions of the rectangle are x=15 Feet and 3y=30 Feet
Area =A=x(3y)
A=15(30)ย
A=450 Square feet.
Ex.ย A manufacturer needs to make a cylindrical can that will hold 1.5 litres of liquid. Determine the dimensions of the can that will minimize the amount of material used in its construction.
We know that, for a cylinder:
Area =A=2ฯrh+2ฯr2
Volume V=ฯr2h
The volume here is fixed. V=1.5 litres or V=1500cm3
1500=ฯr2h
h = 1500/ฯr2
Putting the value of h in area:
A = 2ฯr(1500/ฯr2) + 2ฯr2
a = 3000/r + 2ฯr2
Differentiating the area and equating to zero, to minimize it.
We only have a single critical point to deal with here and notice that 6.2035 is the only value for which the derivative will be zero and hence the only place that the derivative may change sign.
The absolute minimum value of the area must occur at r=6.2035
Now, โ = 1500/๐๐2
โ = 1500/๐(6.2035)2
Therefore, if the manufacturer makes the can with a radius of 6.2035 cm and a height of 12.4070 cm the least amount of material will be used to make the can.
Ex. An apartment complex has 250 apartments to rent. If they rent x apartments then their monthly profit, in dollars, is given by, Px=-8x2+3200x-80000
How many apartments should they rent in order to maximize their profit?
Px=-8x2+3200x-80000ย
To maximize this profit, we will differentiate and equate it to zero. We need to make sure the value of x is less than or equal to 250.
๐ โฒ (๐ฅ) = ๐(โ8๐ฅ2 + 3200๐ฅ โ 80000)/๐๐ฅ
๐ โฒ (๐ฅ) = โ8(2๐ฅ) + 3200
๐ โฒ (๐ฅ) = โ16๐ฅ + 3200
Now, Pโ(x)=0
-16x+3200=0ย
x=320016ย
x=200ย
Since the profit function is continuous and we have an interval with finite bounds we can find the maximum value by simply plugging in the only critical point that we have and the end points of the range.
P(0)=-80,000ย
P(200)=240,000ย
P(250)=220,000ย
So, it looks like they will generate the most profit if they only rent out 200 of the apartments instead of all 250 of them.