Structural isomers: different arrangements of the same atoms
C6H5
C8H18(l) + 12 1 /2 O2(g) → 8CO2(g) + 9H2O(g) ∆H = -5470 kJ
C2H4(g) + Br2(aq) → C2H4Br2(aq)
brown colourless
nC2H4 → [CH2-CH2 ]n
C2H5OH(l) + 3O2(g) → 2CO2(g) + 3H2O(g) ∆H = -1367 kJ
CH3CH2Cl(g) + OH (aq) → CH3CH2OH(aq) + Cl (aq)
C2H6(g)+ Cl2(g) → C2H5Cl(g)+ HCl(g)
rate = k[halogenoalkane][nucleophile]
rate = k[halogenoalkane]
The rate of a nucleophilic substitution reaction depends on three main factors.
1) The identity of the halogen
Carbon – halogen bond | Bond enthalpy/ kJ mol-1 |
C– F | 492 |
C – Cl | 324 |
C – Br | 285 |
C– I | 228 |
Table 1: Bond dissociation energies of carbon halogen bonds
2.) The classes of halogenoalkane: Primary, secondary, or tertiary
Halogenoalkane | Mechanism |
primary | SN2 |
secondary | SN2/SN1 |
tertiary | SN1 |
Table 2: Prevalence of the SN2/SN1 mechanisms in different classes of halogenoalkanes
3.) The choice of solvent
Type of carbocation | 3° | 2° | 1° |
Level of stability | most stable | least stable | |
Structure |
Table 3: The relative stabilities of primary, secondary and tertiary carbocations form the basis of Markovnikov’s rule
R-CHO + 2[H] → R-CH2OH
R-CO-R′ + 2[H] → R-CH(OH)-R′
Flowchart 1: Different types of isomers.